Measurement of charm rare decays Claudia Vacca, on behalf of the LHCb collaboration ### Overview - o A brief introduction on charm rare decays and LHCb - LHCb results: $$\begin{array}{l} \circ \ D^0 \to \mu^+ \mu^- \\ \circ \ D^0 \to \pi^+ \pi^- \mu^+ \mu^- \\ \circ \ D^+_{(s)} \to \pi^+ \mu^+ \mu^- / D^+_{(s)} \to \pi^- \mu^+ \mu^+ \end{array}$$ - Future prospects - Conclusions ## Importance of charm rare decays #### Why charm rare decays - Flavour Changing Neutral Current (FCNC) processes: - o highly suppressed in the SM - o only allowed at loop level - \circ affected by GIM suppression \to D decays more suppressed than B decays, due to the absence of a heavy down-type quark - \circ Charm \to investigate up-type quark FCNCs \to studies complementary to those in B and K sectors - New Physics could enhance SM branching fraction predictions - Multibody semileptonic decays: angular asymmetries studies - \circ A_{CP} and A_{FB} could be enhanced by some NP effects (to $\mathcal{O}(1\%)$ and sometimes $\mathcal{O}(5\%)$) #### LHCb #### Large Hadron Collider-beauty - Single-arm forward spectrometer - o b- and c-hadrons rare decays, CP violation, quark model test - investigating the physics beyond the Standard Model (matter-antimatter asymmetry) - \circ reduced luminosity \to few p-p interactions per bunch crossing (better reconstructibility of events) #### Why LHCb is a very suitable detector: - Excellent muon identification - $0.1.9 < \eta < 4.9$ - \circ High momentum resolution: $0.4\% < \frac{\delta p}{p} < 0.6\%$ - Very good performance in reconstruction of vertices - o High performance trigger: flexible and configurable - o 5(2) \cdot 10¹² $D^0(D^+)$ in LHCb acceptance in 3fb⁻¹ of integrated luminosity at $\sqrt{s} = 7 8$ TeV $D^0 \rightarrow \mu^+ \mu^-$: strategy Phys.Lett.B, Vol.725, 2013, 15-24 #### SM contributions - \circ SM short distance contribution $\mathcal{O} \sim 10^{-18}$ - \circ SM long distance prediction $\mathcal{O} \sim 10^{-11}$ (dominated by the two-photon intermediate state) - \circ Previous limit $\mathcal{O} \sim 10^{-7}$ Belle Collaboration [PRD 81 (2010) 091102R] - \circ Signal channel: $D^{*+} \to D^0(\mu^+\mu^-)\pi^+$ - Normalization channel: $D^{*+} o D^0(\pi^+\pi^-)\pi^+$ - \circ Control channels: $D^{*+} \to D^0(K^-\pi^+)\pi^+$, $D^0 \to K^+\pi^+$, $J/\Psi \to \mu^+\mu^-$ (muon identification and trigger efficiency) - \circ Peaking background (2- or 3-body D^0 decays, hadrons misidentified as muons) \to tight particle identification criteria - o Combinatorial background \rightarrow multivariate selection (θ_D,χ^2_{JP}) of D^0 and muons tracks, minimum muons $p_T,...$ $$\begin{array}{c} D^0 \to \mu^+ \mu^- \\ D^0 \to \pi^+ \pi^- \\ D^+ \to \pi^+ \mu^+ \mu^- / D^+ \\ (s) \to \pi^+ \mu^+ \mu^- / (s) \end{array} \to \pi^- \mu^+ \mu^+$$ $$D^0 \to \mu^+\mu^-$$: results Phys.Lett.B, Vol.725, 2013, 15-24 Unbinned maximum likelihood fit of two-dimensional distributions of: \circ $m_{\mu^+\mu^-}$ Total distribution ombinatorial background $$D^{*+} o D^0(K^-\pi^+)\pi^+ \ D^{*+} o D^0(\pi^-\pi^+)\pi^+$$ ### Upper limit (\sqrt{s} =7 *TeV*, 0.9 fb^{-1}): $$\mathcal{B}(D^0 o \mu^+ \mu^-) < 6.2 (7.6) \cdot 10^{-9} \text{ at } 90\% (95\%) \text{ CL}$$ Improved by a factor 20 $$D^0 \rightarrow \pi^+\pi^-\mu^+\mu^-$$: strategy Phys.Lett.B, Vol.728, 2014, 234-243 #### SM contributions - SM prediction $\mathcal{O}(\lesssim 10^{-9})$ - Previous limit $\mathcal{O}(\sim 10^{-5})$ E791 Collaboration [PRL 86(2001)3969] - Signal: $D^{*+} \to D^0(\pi^+\pi^-\mu^+\mu^-)\pi^+$ - o Control leakage from resonant regions into low and high dimuon mass - \circ Signal regions away from $\eta,~\rho^0$ and ϕ resonances (250 $< m_{\mu\mu} < 525 MeV/c^2,$ $m_{\mu\mu} > 1100 MeV/c^2)$ - \circ Peaking background $D^0 o \pi^+\pi^-\pi^+\pi^- + ext{combinatorial}$ - \circ Reference sample: $D^0 \to \pi^+\pi^-\phi(\to \mu^+\mu^-)$ - o Combined multivariate analysis (θ_D, χ^2 of D^0 decay vertex and fligh distance,p and ρ_T of all tracks,...) and muon particle identification $$D^0 \rightarrow \pi^+\pi^-\mu^+\mu^-$$: results Phys.Lett.B. Vol.728, 2014, 234-243 Unbinned maximum likelihood of two-dimensional distributions of $m_{\pi\pi\mu\mu}$ and $\Delta m = m_{\pi\pi\mu\mu\pi} - m_{\pi\pi\mu\mu}$: andidates/(5.0 MeV/c-250 < m(u*u*) < 525 MeV/c2 $m(\pi^+\pi^-\mu^+\mu^-)$ [MeV/c²] Total distribution Filled area - Signal $D^0 \rightarrow \pi^+\pi^-\pi^+\pi^-$ Non peaking background ## Upper limit ($\sqrt{s} = 7$ TeV, 1 fb⁻¹): $$\mathcal{B}(D^0 \to \pi^+\pi^-\mu^+\mu^-) < 5.5(6.7) \cdot 10^{-7} \text{ at } 90\%(95\%) \text{ CL}$$ x70 improvement — 2 orders of magnitude above SM predictions $$D_{(s)}^+ o \pi^+ \mu^+ \mu^- / D_{(s)}^+ o \pi^- \mu^+ \mu^+$$: strategy Phys.Lett.B, Vol.724, 2013, 203-212 #### SM contributions - \circ Previous limits: $D^+ \to \pi^- \mu^+ \mu^+ \ \mathcal{O} \sim (10^{-6})$ Babar Collaboration[PRD 84(2011)072006] $D_s^+ \to \pi^- \mu^+ \mu^+ \ \mathcal{O} \sim (10^{-5}) \text{ Babar Collaboration[PRD 84(2011)072006]} \\ D^+ \to \pi^+ \mu^+ \mu^- \ \mathcal{O} \sim (10^{-6}) \text{ D0 Collaboration [PRL 100(2008)101801]} \\ D_s^+ \to \pi^+ \mu^+ \mu^- \ \mathcal{O} \sim (10^{-5}) \text{ FOCUS Collaboration [PRB 572 (2003)21]}$ - Control leakage from resonant regions - \circ Control channel $D^+_{(s)} \to \pi^+(\phi \to \mu^+\mu^-)$ - \circ Peaking background $D_{(s)}^+ \to \pi^+\pi^+\pi^-$ - Multivariate analysis (θ_D, χ^2 of $D^+_{(s)}$ decay vertex and fligh distance,p and p_T of all tracks,...) + particle identification selection $$D_{(s)}^+ o \pi^+ \mu^+ \mu^- / D_{(s)}^+ o \pi^- \mu^+ \mu^+$$: results I Phys.Lett.B. Vol.724, 2013, 203-212 1900 LHCb #### Binned maximum likelihood fit $$\circ~D^+_{(s)} ightarrow \pi^+ \mu^+ \mu^-$$ in m($\mu^+ \mu^-$) bins: $$\circ$$ a) low-m($\mu^+\mu^-$) 250-525 $$MeV/c^2$$ • c) high-m($$\mu^+\mu^-$$) 850-1850 $$MeV/c^2$$ 1250-2000 MeV/c^2 #### Total distribution Signal Solid area-Peaking background Dashed line-Non peaking background • $$D^+_{(s)} \to \pi^- \mu^+ \mu^+$$ in m($\mu^+ \pi^-$) bins: - \circ a) 250-1140 MeV/ c^2 - \circ b) 1140-1340 MeV/ c^2 - \circ c) 1340-1550 MeV/ c^2 - \circ d) 1540-2000 MeV/ c^2 $$\begin{array}{c} D^{0} \to \mu^{+}\mu^{-}_{D^{0}} \\ D^{0} \to \pi^{+}\pi^{-}\mu^{+}\mu^{-} \\ D^{+} \to \pi^{+}\mu^{+}\mu^{-} / D^{+}_{(s)} \to \pi^{-}\mu^{+}\mu^{+} \end{array}$$ $$D_{(s)}^+ o \pi^+ \mu^+ \mu^- / D_{(s)}^+ o \pi^- \mu^+ \mu^+$$: results II Phys.Lett.B, Vol.724, 2013, 203-212 ## Upper limits ($\sqrt{s} = 7 \, TeV, 1 fb^{-1}$): $$\mathcal{B}(D^+\to\pi^+\mu^+\mu^-)<7.3(8.3)\cdot 10^{-8}$$ at $90\%(95\%)$ CL $\mathcal{B}(D_s^+\to\pi^+\mu^+\mu^-)<4.1(4.8)\cdot 10^{-7}$ at $90\%(95\%)$ CL $\mathcal{B}(D^+\to\pi^-\mu^+\mu^+)<2.2(2.5)\cdot 10^{-8}$ at $90\%(95\%)$ CL $\mathcal{B}(D_s^+\to\pi^-\mu^+\mu^+)<1.2(1.4)\cdot 10^{-7}$ at $90\%(95\%)$ CL ### Improved by a factor 50 1 order of magnitude above largest NP predictions for $D_s^+ o \pi^+ \mu^+ \mu^-$ ## Future prospects: ongoing #### Analyses in progress or planned - \circ Lepton Flavour Violation $D^0 o e^\pm \mu^\mp$ - $\circ~D^0 \to K^\mp \pi^\pm \mu^+ \mu^-$ - \circ Update of $D^0 o \mu^+\mu^-$ - $\circ \Lambda \to p\mu\mu$ - $\circ D^0 \to \phi \gamma$ - o ...and some others planned ## Future prospects: run II and upgrade \circ LHCb Run II: $8 \textit{fb}^{-1},\, \sqrt{\textit{s}} = 13 \textit{TeV}$ • LHCb Upgrade: $50fb^{-1}$, $\sqrt{s} = 14 \text{ TeV}$ #### Predictions on branching fractions's upper limits: Assuming the same efficiency and signal-to-background ratio: | Mode | Run I | Run II | Upgrade | |---------------------------------------|----------------------|-----------------|------------| | $D^0 o hh' \mu^+ \mu^-$ | few 10 ⁻⁷ | fewer 10^{-7} | 10^{-8} | | $D^0 o \mu^+\mu^-$ | few 10 ⁻⁹ | fewer 10^{-9} | 10^{-10} | | $D^+ o \pi^+ \mu^+ \mu^-$ | few 10^{-8} | fewer 10^{-8} | 10^{-9} | | $D_s^+ o K^+ \mu^+ \mu^-$ | few 10^{-7} | fewer 10^{-7} | 10-8 | | $\Lambda o p \mu \mu$ | few 10 ⁻⁷ | fewer 10^{-7} | 10^{-8} | | $D^0 o e\mu$ | few 10^{-8} | fewer 10^{-8} | 10^{-9} | | $\sigma_{A_{CP}}(D^0 o \phi \gamma)$ | 10% | 5% | ? | ### Future prospects: run II and upgrade #### Predictions on asymmetries sensitivity: Assuming the same efficiency and signal-to-background ratio: | Mode | Run II | Upgrade | |--------------------------------------|--------------------|---------------------| | $D^+ \rightarrow \pi^+ \mu^+ \mu^-$ | 0.6%(30000 events) | 0.2%(300000 events) | | $D^0 o \pi^+\pi^-\mu^+\mu^-$ | 3%(1500 events) | 1%(15000 events) | | $D^0 o K^- \pi^+ \mu^+ \mu^-$ | 1%(10000 events) | 0.3%(100000 events) | | $D^0 \rightarrow K^+\pi^-\mu^+\mu^-$ | 40%(30 events) | 12%(300 events) | | $D^0 o K^+K^-\mu^+\mu^-$ | 11%(150 events) | 4%(1500 events) | These predictions could improve under the upgrade conditions: - o offline reconstruction quality available in a fully software trigger ($\epsilon \sim x3$) - other improvements in the analyses - o combinations of modes might matter more than individual sensitivities ## Conclusions - The results shown are all best world limits - \circ Results on $D^0 \to e\mu$ and $D^0 \to K\pi\mu\mu$ will become public very soon - Upgrades ongoing or planned - Wait for Run II data Overview A brief introduction Measurements Future prospects Conclusions ## Backup Slides $$D^0 \to \pi^+ \pi^- \mu^+ \mu^-$$ $$D_{(s)}^+ \to \pi^+ \mu^+ \mu^-$$ | Trigger conditions | Bin description | $m(\mu^+\mu^-)$ range [MeV/ c^2] | D^+ yield | D_s^+ yield | |---------------------------------------|----------------------|-------------------------------------|---------------|---------------| | | $low-m(\mu^+\mu^-)$ | 250 - 525 | -3 ± 11 | 1 ± 6 | | Triggers without | η | 525 - 565 | 29 ± 7 | 22 ± 5 | | $m(\mu^+\mu^-) > 1.0 \text{ GeV}/c^2$ | ρ/ω | 565 - 850 | 96 ± 15 | 87 ± 12 | | | φ | 850 - 1250 | 2745 ± 67 | 3855 ± 86 | | All triggers | φ | 850 - 1250 | 3683 ± 90 | 4857 ± 90 | | An origgers | $high-m(\mu^+\mu^-)$ | 1250 - 2000 | 16 ± 16 | -17 ± 16 | $$D_{(s)}^+ \to \pi^+ \mu^+ \mu^-$$ Figure 4: Background-subtracted $m(\mu^+\mu^-)$ spectrum of (a) $D^+ \to \pi^+\mu^+\mu^-$ and (b) $D^+_s \to \pi^+\mu^+\mu^-$ candidates that pass the final selection. The inset shows the ϕ contribution, and the main figure shows the η and the ρ/ω contributions. The non-peaking structure of the low and high- $m(\mu^+\mu^-)$ regions is also visible. $$D_{(s)}^+ \to \pi^- \mu^+ \mu^+$$ ## Olga Kochebina PhD Tl | Model name | Main characteristics | Affected observables | |--|--|---| | , | $c \rightarrow u\mu^{+}\mu^{-}$ current is possible at tree | | | Minimal Su-
persymmetric
Model with
R-parity
violation
(MSSM R) | level via down-type squark. It has a
very large impact on G_0 and G_{20} ,
quantified in [40, 50], and updated
in [22] in the light of the constraints
brought in 2007 by the discovery of the
D^p mixing. In the light of recent
constraints from $K \to m\nu \sigma$ decays and
charm decays, there is now little hope
tog et sizeable contributions from this
kind of NP to the decays we are
interested in. See for instance [54]. | For $D^+ \to \pi^+ \mu^+ \mu^-$:
$\mathcal{B} = 6.5 \times 10^{-6}$ [52], recently measured $\mathcal{B} < 7.3 \times 10^{-8} 69.9\% CL$ [13].
New constraints from $D^0 \to \mu^+ \mu^-$:
$\mathcal{B} = 2 \times 10^{-8}$ [55] | | Extra up-like
quark singlet | New quark doublet or singlet, extended
CKM matrix. The FCNC possible at
tree level with cuZ coupling. A study
of their impact can be found in [56],
with an update in [52]. Large effects on
C ₉ and C ₁₀ were predicted there. | For $D^+ \to \pi^+ \mu^+ \mu^-$:
$\mathcal{B} = 1.6 \times 10^{-9}$ [52]. For
$D^0 \to \rho^0 l^+ l^-$:
$\mathcal{A}_{FB} \sim \text{few } \%$ | | Littlest Higgs
Model | Particular version of models with αZ coupling, where the Higgs boson is a pseudo-Numbu-Goldstone boson of spontaneously broken global symmetry. It contains a new massive gauge boson and a new up-like quark ℓ . Weak currents are modified, CKM is extended to be 4×3 [56, 57]. The model modifies coefficients G_0 and G_{10} . In particular, C_{10} , while z 0 in the SM becomes of the order of G_2 [56]. | For $D^+ \to \pi^+ \mu^+ \mu^-$:
$\mathcal{B} = 8.0 \times 10^{-11}$ [57]; For $D^0 \to p^0 \mu^+ \mu^-$:
$\mathcal{A}_{FB} \sim \mathcal{O}(10^{-3})$ [57] | | Leptoquark
model | Carrying both lepton and baryon
numbers, new bosons can couple to a
lepton and a quark [58]. | For $D^+ \rightarrow \pi^+ \mu^+ \mu^-$:
$\mathcal{B} = 9.4 \times 10^{-8} [58]$ | | Randall-
Sundrum
model with a
warped extra
dimension | New gauge bosons appear, that
mediate flavour violation. It brings a
small contribution to C_9 , which at the
most could be comparable to the SM
value (for some marginal values of the
models parameters). On the other
hand, as in other models, the tiny C_{10}
is enhanced by several orders of
magnitude [51]. | For $D \rightarrow X_u \mu^+ \mu^-$: A_{FB} ,
$A_{CF} \sim \text{few } \%$
$A_{FB}^{CP} > \mathcal{O}(10\%)$ [51] | ## Olga Kochebina PhD Th | Model name | Main characteristics | Affected observables | |---|--|--| | Minimal Su-
persymmetric
Model with
R-parity
conservation
(MSSM R) | New sources of flavour symmetry breaking. In the mass insertion approach, off-diagonal elements in the squark mass matrix yield flavour changing couplings matrix prices and supplies of flavour i , of helicity H and type q (up or down), to of helicity H and type q (up or flavour i , of helicity H and type q . Loop amplitudes as that in Figure 1.19(a) are then possible. They enhance C_T , C_S and C_S . This of decises of 100 , 90 –66]]. | For $D^0 \to \rho^0 \mu^+ \mu^-$:
$\mathcal{B} \simeq 1.3 \times 10^{-6}$ [49] | | Littlest Higgs
Model with
T-parity
(LHT) | LH Model with additional T-parity.
Enhancement of the C_9 and C_7 is very
small. The main effect is in fact on C_{10} ,
which is enhanced by orders of magnitude. | For $D \rightarrow X_u \mu^+ \mu^-$:
$A_{FB} \sim \mathcal{O}(0.5\%)$,
A_{FB}^{CP} up to
$\mathcal{O}(10\%)$ [47] | | Generic
models with
generated
weak phases | Models that generate weak phases acquired by C_7 and C_9 without sensitive impact on C_{10} [46]. | For $D^+ \to \pi(\mu^+\mu^-)_{\phi}$:
$A_{CP} \sim \mathcal{O}(1\%-10\%)$ [46] | | Generic
Z-mediated
models | Loop amplitudes with an internal $Z^{(1)}$ and
an internal top quark (Figure 1.19(b)) can
bring C_9 and C_{10} up to $O(1)$, if the
couplings they involve are tuned to
reproduced the measured value of
ΔA_{CP} [18]. | For $D^+ \to h^+ h^{(\prime)} = \mu^+ \mu^-$ [18]:
$A_{T_{odd}}$ up to 8%, A_{FB} up to 3% | Table 1.6: Overview of the NP theoretical models that have FCNC at loop level. The estimates of affected observables are presented as well ## Olga Kochebina PhD Th - [18] L. Cappiello, O. Cata, and G. D'Ambrosio, Standard Model prediction and new physics tests for D⁰ → h⁺h⁻l⁺l[−] (h = π, K: l = e, μ), JHEP 1304 (2013) 135, arXiv:1209.4235. - [46] S. Fajfer and N. Kosnik, Resonance catalyzed CP asymmetries in D → Pl⁺l⁻, Phys. Rev. D87 (2013) 054026, arXiv:1208.0759. - [47] A. Paul, I. I. Bigi, and S. Recksiegel, On D → X_ul⁺l⁻ within the Standard Model and Frameworks like the Littlest Higgs Model with T Parity, Phys. Rev. D83 (2011) 114006, arXiv:1101.6053. ## Olga Kochebina PhD Th - [49] G. Burdman, E. Golowich, J. L. Hewett, and S. Pakvasa, Rare charm decays in the standard model and beyond, Phys. Rev. D66 (2002) 014009, arXiv:hep-ph/0112235. - [50] G. Burdman and I. Shipsey, D⁰ D ⁰ mixing and rare charm decays, Ann. Rev. Nucl. Part. Sci. 53 (2003) 431, arXiv:hep-ph/0310076. - [51] A. Paul, A. de La Puente, and I. I. Bigi, Manifestations of Warped Extra Dimension in Rare Charm Decays and Asymmetries, arXiv:1212.4849. - [52] S. Fajfer, N. Kosnik, and S. Prelovsek, Updated constraints on new physics in rare charm decays, Phys. Rev. D76 (2007) 074010, arXiv:0706.1133. - [53] LHCb Collaboration, R. Aaij et al., Evidence for CP violation in time-integrated D⁰ → h⁻h⁺ decay rates, Phys. Rev. Lett. 108 (2012) 111602, arXiv:1112.0938. - [54] I. Dorsner, S. Fajfer, J. F. Kamenik, and N. Kosnik, Can scalar leptoquarks explain the f(D(s)) puzzle?, Phys. Lett. B682 (2009) 67, arXiv:0906.5585. - [55] N. Kosnik, Talk, Theory implication for Rare charm decays on the workshop on the Implications of LHCb measurements and future prospects, CERN, 14-16 October 2013, https://indico.cern.ch/event/255380/session/2/contribution/14 (2013). - [56] S. Fajfer and S. Prelovsek, Search for new physics in rare D decays, Conf. Proc. C060726 (2006) 811, arXiv:hep-ph/0610032. - [57] S. Fajfer and S. Prelovsek, Effects of littlest Higgs model in rare D meson decays, Phys. Rev. D73 (2006) 054026, arXiv:hep-ph/0511048. - [58] S. Fajfer and N. Kosnik, Leptoquarks in FCNC charm decays, Phys. Rev. D79 (2009) 017502, arXiv:0810.4858. - [59] G. Isidori and J. F. Kamenik, Shedding light on CP violation in the charm system via D to V gamma decays, Phys. Rev. Lett. 109 (2012) 171801, arXiv:1205.3164. - [60] J. Lyon and R. Zwicky, Anomalously large O₈ and long-distance chirality from A_{CP}[D⁰ → (ρ⁰, ω)γ](t), arXiv:1210.6546. - [61] G. F. Giudice, G. Isidori, and P. Paradisi, Direct CP violation in charm and flavor mixing beyond the SM, JHEP 1204 (2012) 060, arXiv:1201.6204.